
Long-lived nearby-template preimages on biometric transformation

with genetic algorithm

Tanguy Gernot, Patrick Lacharme

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract

We study the security of biometric data’s transforma-
tions, especially about BioHashing. We perform sev-
eral preimage attacks with genetic algorithm. Long-
lived nearby-template preimage are fairly precisely
approximated in a reasonable time.
Keywords : Biometric transformation security,

Biohashing, Genetic algorithms

1 Introduction

The use of biometric systems has exploded in recent
years. The data handled there is sensitive, because
biometric data cannot been changed like passwords.
Several protection systems were invented to prevent
biometric data recovery. The goal of biometric trans-
formation is to ensure security properties like revo-
cability, noninvertible transformation (oneway trans-
form), cross application and so on. For example,
biohashing is a popular cancelable biometric scheme,
used as biometric transformation [11].

Without loss of generality, a biometric transfor-
mation maps a real-values vector into binary tem-
plate using random seed. The comparison of binary
templates uses the Hamming distance. A long-lived
nearby-template preimage x is recovered by an at-
tacker from the knowledge of a template and the cor-
responding seed, if the map of x using a second seed is
near to a second template (unknown to the attacker).

A long-lived nearby-template preimage is recovered
by performing different attacks based on genetic al-
gorithm. We compare the performance of our genetic
attacks with different choices of parameters and re-
garding to an adaptative-plaintext attack.

On section 2, we discuss about the different idea
find in the literature, especially about the input and
the parameters to give to genetic algorithm. On sec-
tion 3, we will talk about the implementation of the

algorithm which will allow use to compare and esti-
mate the precision of the constructed image, and we
will show our experiments results. We will conclude
in section 4.

2 State of the art

Genetic algorithms have been used to construct
preimage in several papers as [6] [2] [3] [9]. There
is four main steps in genetic algorithm : generation,
selection, crossover, mutation.

The generation of the initial population uses two
major methods : random generation of each people,
or low discrepancy sequence [5]. It’s currently diffi-
cult to use quasi random sequence in our context of
high dimension vector (512 values). In fact, in genetic
algorithm, the vector don’t need to be random, but a
good uniform distribution is required [7].

Concerning the selection step, we have a popula-
tion of candidates, and we must select a subset of
these peoples. There is three major strategies : the
roulette wheel selection, the tournament selection and
the rank selection [4] :

• Roulette wheel : it’s a proportionate reproduc-
tion in terms of fitness score.

• Tournament selection : randomly draw 2 in-
dividuals and take the most fit with probabil-
ity p. Here, we also use a scale factor : ”the
best individuals get a lower probability than they
should, and the worst ones see their probability
increased. (in the selection process) In the last
iterations, the scale factor is increased to make
sure that the algorithm effectively converges (SF
1 in the last iteration).” [1]

• Rank selection : take the individuals in order of
their fitness score

1

The crossover and the mutation step is less discuss,
but we find some information about simple and dou-
ble crossover [1]. The crossover step allows us to mix
two vectors. We cut vector in two or three pieces [1],
and we exchange them between the two vectors like
in 1.

Figure 1: Simple and double crossover

There is also different methods of mutation, like
single point and multi points mutation [4].

3 Results

3.1 Development

We use the FVC2002 database [8] of 800 fingerprints,
8 fingerprints of the same finger of 100 different peo-
ples, and the biohashing transformation providing a
128 bits template.
Next we have the following algorithm to attack :

• First, we pop 2 vectors of the same people, and
compute their template with 2 different seeds.

• The goal is to generate a preimage, that its tem-
plate is accepted with the first template, ie the
hamming distance is less than a threshold, and
its template is as close as possible of the second
template.

Experiments are presented with curves that represent
the minimum distance distance over time (number of
distance computed) between the generated template
and the second legitimate template. We also have
a table who give the minimum distance obtained for
each threshold.

3.2 Genetic algorithm

In this section, we discuss about the results we ob-
tain with different paramaters, and finally, we show
our attack result with the better configuration. The

original population is composed of n vectors which
are tested preimages. This population is updated by
m generations.

Crossover Their is no difference between the sim-
ple and double crossover regarding the minimal dis-
tance obtained (we use n = m = 100).

Probability of mutation Better results are ob-
tained with probability of 0.2 or 0.3 (we use n = m =
100). It’s note that high mutation probability bring
us closer to randomness.

Selection method We did the following experience
: we make one test for 100 peoples with population
of size 200 and 500 iterations. Figure 2 shows the
evolution of the minimal distance between the second
genuine template and our better template candidate,
where the threshold is 16 in 2a and 6 in 2b.
There are 3 curves that represent the different selec-
tion method applied to the genetic algorithm. There
is also a curve that represent the efficiency of a ran-
dom generation of the preimage candidate.
The curves represent the best candidate encountered
according to the number of comparison (metric repre-
senting duration). Be careful that the scales are not
the same on the 2 graphs.

These results are also represented in the table 1
: for all thresholds (until 16), there is the better
minimal distance with the second genuine template
is given. There is also the moment, representing with
the number of comparison, when we found this can-
didate.

We observe that the rank selection is the better se-
lection’s method. In fact, we can see that it obtains
a minimal distance of 0 from threshold at 6.
The roulette wheel selection has good score, but
longer and a little worse.
The tournament selection is the worst : it’s clearly
longer, and it obtains worse minimal distance.
However, these 3 selection’s method are really better
than the random candidate’s generator.

Population and iteration The size of the popula-
tion and the number of iterations are decisive for the
effectiveness of our program [10].

We make several experiences by changing these pa-
rameters, and we show here the results of 2 combina-
tions. The first one has a population size of n = 200
and makes m = 500 iterations. The second one has a
population size of 100 and makes 100 iterations.

2

(a) Threshold at 16

(b) Threshold at 6

Figure 2: Selection’s method

θ Rank Tournament Wheel Random
0 - - - -
1 - - - -
2 - - - -
3 - - - -
4 - - 7 (6.9) -
5 22 (0.15) 20 (3.3) 6 (3.9) -
6 0 (4.2) 13 (2.1) 4 (2.7) -
7 0 (2) 13 (2.1) 3 (3.5) 25 (3)
8 0 (1.8) 12 (4.5) 1 (5.3) 23 (1.4)
9 0 (1.6) 8 (5.3) 1 (5.3) 15 (1.3)
10 0 (1.3) 7 (6) 0 (4.8) 15 (1.3)
11 0 (0.8) 2 (6.5) 0 (3.4) 14 (0.3)
12 0 (0.6) 2 (6.5) 0 (3.2) 9 (0.6)
13 0 (0.6) 2 (6.3) 0 (2.1) 9 (0.6)
14 0 (0.6) 2 (5.9) 0 (2) 9 (0.6)
15 0 (0.6) 2 (5.6) 0 (1.8) 6 (0.1)
16 0 (0.6) 2 (5.5) 0 (1.8) 6 (0.1)

Table 1: Distance from second template in terms of
selection’s method (#comparison in (104))

As in 3.2, we give 2 graphs, the first one 3a with
the threshold at 16, and the second one 3b with the
threshold at 6. There are 2 curves : one represents
the combination 500 iterations and 200 peoples, the
other represents the combination 100 iterations and
100 peoples. Again, be careful that the scales are not
the same on the 2 graphs. As we can see, the first
method finally give a much better score. In fact, the
second method (100 iterations 100 peoples) quickly
converges in a local maximum.

We also have the table 2, which gives the minimal
distance obtained with a specific threshold, and when.
It also shows the best accuracy of the first combina-
tion.

(a) Threshold at 16

(b) Threshold at 6

Figure 3: Genetic population and iteration compari-
son

3

θ 500it200pop 100it100pop
0 - -
1 - -
2 - -
3 - -
4 - -
5 17 (30326) -
6 15 (31546) -
7 10 (25373) -
8 10 (25373) -
9 3 (63592) 33 (360)
10 3 (61795) 10 (2254)
11 3 (61795) 9 (6577)
12 3 (58140) 8 (6097)
13 1 (66948) 7 (4867)
14 1 (66797) 7 (3096)
15 1 (66797) 3 (8591)
16 1 (66797) 3 (8591)
17 1 (64996) 2 (8899)
18 1 (63395) 2 (8900)
19 1 (62400) 2 (7898)
20 1 (62400) 1 (8898)
21 1 (62400) 1 (6599)
22 1 (62400) 1 (5898)
23 1 (62400) 1 (5899)
24 1 (62400) 1 (5900)
25 1 (62400) 1 (5900)
26 1 (62400) 1 (5900)

Table 2: Distance from second template in terms of
population and iteration combination

3.3 Adaptative-plaintext attack algo-
rithm

To have a better element of comparison for genetic
algorithm compared to random generation, we try 3
different adaptative-plaintext attacks :

• the first one : we have a preimage candidate,
we generate all its neighbors. To do that, for
each vector index one by one, we create an other
preimage for each possible values for this vector
index with a given step. Then, we select the
better neighbor according to the fitness function.
And we start again with the new preimage.

• the second one : henceforth, we do the same, but
for each vector index, we save the better value
without changing the others. The new preimage
is the vector formed by all the better saved values
for each index.

• the last one : we do the same of the second
method, but for each vector index, we save the
better value taking into account the previous bet-

θ First Second Third
0 - - -
1 - - -
2 - - -
3 - - -
4 - - -
5 - - -
6 19 (2) 128 (1.2) -
7 18 (2) 20 (1.2) 20 (1.4)
8 16 (2.7) 20 (1.2) 20 (1)
9 14 (1.9) 17 (1.2) 17 (1)
10 12 (1.9) 8 (1.4) 8 (1.2)
11 12 (1.9) 8 (1.4) 8 (1.2)
12 10 (2.3) 8 (1.9) 8 (1.2)
13 10 (2.3) 7 (1.9) 7 (1.2)
14 9 (2.1) 7 (1.6) 7 (1.2)
15 9 (2.1) 7 (1.6) 7 (1.2)
16 9 (2.1) 7 (1.6) 7 (1.2)

Table 3: Comparison of the 3 adaptative-plaintext
attack (#comparison in (106))

ter value for each previous index. So we gradu-
ally build the new preimage.

We make an experience to find out which method
is the best. To do that, we make a test and start an
attack with each method. We can see on 3 that the
second and the third method has a better minimal
score, and faster, than the first one. Comparing to
the genetic algorithm results in 1, it’s obvious that
genetic algorithms are much faster and much accurate
than adaptative-plaintext attack algorithm.

4 Conclusion and discussion

Genetic algorithms allow us to design attack
against biometric transformation. For example, ex-
periments have showed that a mutation probability
at 0.2, a rank selection’s method, and a population
size of 200 (with 500 iterations) give the best long-
lived nearby-template preimage.

Perspectives This may be an idea to improve the
enrollment step, by compute an average vector in-
stead of taking the most accurate vector of the en-
rollment.
This work should be generalized to generic transfor-
mations and several biometric modalities.

References

[1] Andre, J., Siarry, P., Dognon, T.: An improvement of
the standard genetic algorithm R©ghting premature con-

4

vergence in continuous optimization. Advances in Engi-
neering Software p. 12 (2001)

[2] Dong, X., Jin, Z., Jin, A.T.B.: A Genetic Algorithm En-
abled Similarity-Based Attack on Cancellable Biometrics.
arXiv:1905.03021 [cs] (May 2019), arXiv: 1905.03021

[3] Galbally, J., Ross, A., Gomez-Barrero, M., Fierrez, J.,
Ortega-Garcia, J.: Iris image reconstruction from binary
templates: An efficient probabilistic approach based on
genetic algorithms. Computer Vision and Image Under-
standing 117(10), 1512–1525 (Oct 2013)

[4] Hsu, W.H.: Introduction to Genetic Algorithms. CIS 732:
Machine Learning and Pattern Recognition p. 18 (2002)

[5] Kocis, L., Whiten, W.J.: Computational investigations of
low-discrepancy sequences. ACM Transactions on Mathe-
matical Software 23(2), 266–294 (Jun 1997)

[6] Lacharme, P., Cherrier, E., Rosenberger, C.: Preimage
Attack on BioHashing. In: International Conference on
Security and Cryptography (SECRYPT). p. 8 p. (2013)

[7] Maaranen, H., Miettinen, K., Mäkelä, M.: Quasi-random
initial population for genetic algorithms. Computers &
Mathematics with Applications 47(12), 1885–1895 (Jun
2004)

[8] Maio, D., Maltoni, D., Cappelli, R., Wayman, J., Jain, A.:
FVC2002: Second Fingerprint Verification Competition.
In: Object recognition supported by user interaction for
service robots. vol. 3, pp. 811–814. IEEE Comput. Soc
(2002)

[9] Rozsa, A., Glock, A.E., Boult, T.E.: Genetic algorithm
attack on minutiae-based fingerprint authentication and
protected template fingerprint systems. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). pp. 100–108. IEEE (Jun 2015)

[10] Stanhope, S.A., Daida, J.M.: Optimal mutation and
crossover rates for a genetic algorithm operating in a dy-
namic environment. In: Evolutionary Programming VII,
vol. 1447, pp. 693–702. Springer Berlin Heidelberg (1998)

[11] Teoh, A.B., Ngo, D.C., Goh, A.: Personalised crypto-
graphic key generation based on FaceHashing. Computers
& Security 23(7), 606–614 (Oct 2004)

5

	Introduction
	State of the art
	Results
	Development
	Genetic algorithm
	Adaptative-plaintext attack algorithm

	Conclusion and discussion

